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Abstract 

CBS-MP [1] is a recent variant of Conflict-Based Search 

(CBS) [2] which works in continuous space. One item our lab 

has been working on is creating methods to ‘repair’ conflicts 

in CBS-MP, where repair is defined as using local changes to 

conflicting robot paths outside of the graph representation to 

resolve the conflict and thereby avert the creation of a new 

Conflict Tree node. In this project, we begin explore one type 

of local repair, which we call Collision Avoidance Templates 

(CATs). CATs are solutions to atomic subproblems, which 

can be repeatedly pasted into the roadmap to repair conflicts, 

with the intent of finding a solution faster for complex 

problems. We begin by working with a simple and specific 

type of Multi-Agent Motion Planning (MAMP) problem to 

lay ground work for CATs. At the time of writing this report, 

the implementation able to solve this simplified problem is 

nearly complete, but not at a stage where experimental data 

can be collected to analyze effectiveness of CATs. 

 

Background  

Motion planning (MP) problems are defined as finding a motion a robot can take from point A 

to point B in a continuous workspace without colliding with static obstacles. Naively searching 

the entire continuous space is intractable because of the time required to check each 

configuration’s validity is relatively high, so algorithms such as Probabilistic Roadmaps (PRMs) 

take samples of configurations to try and find from sample to sample [3].  

Multi-agent motion planning (MAMP) is a generalization of MP where there are multiple robots 

which also must not collide with each other. The discrete environment version of this problem is 

multi-agent path finding (MAPF), where each robot occupies a vertex on a graph and cannot 

share vertices or cross the same edge with another robot at the same timestep. Conflict-based 

Figure 1: A template pasted into a 

PRM. In the upper-left image, the 

template path is shown. In the 

main image, the repaired path is 

shown, with the zig-zag in the path 

near the beginning being the 

repaired location where the 

template was pasted. 



search (CBS) [2] and variants of it have been applied to both these problems with much success. 

CBS works by planning a path for each robot without regard for the other robots, then checking 

for collisions on those paths. If a collision occurs between a pair of robots, the algorithm will 

then consider the two possible resolutions to the conflict, where either robot acquiesces and 

avoids that space at that time, then repeats the planning with that new constraint. This 

dichotomic conflict resolution is abstractly stored and represented in a Conflict Tree (CT), 

where each node of the tree stores the constraints, and other information, and each leaf of the 

tree can be evaluated by determining the paths with the constraints, finding a conflict, and 

create two children nodes corresponding to the two ways a conflict can be resolved. This leads 

to exponential growth rate with regards to the number of conflicts. Recent work has been done 

in applying CBS to MAMP problems, such as CBS-CT [4] and CBS-MP [1].  

To improve the performance of CBS methods for MAMP, attempting to resolve conflicts locally 

before adding a constraint and expanding the CT, which may speed up the time to find a 

solution. We call this ‘local repair’, and there are different ways to do it. One way is to simply 

do additional sampling to the region and then run a MAMP solver in the local region with just 

the pair of robots, and has been implemented in our lab prior to the start of this project.  

Part of the inspiration for this work is Interaction Templates, which are used in Task-and-

Motion Planning problems to exploit the symmetry of hand-offs and other inter-robot 

interactions [5]. We seek to also employ the concept of templates to exploit symmetry, in our 

case to speed up conflict resolution. 

 

Project Objective  

The objective of this summer project was to implement a new type of local repair which uses 

conflict-free templates of motion for a pair of robots, which we call Collision Avoidance 

Templates (CATs). Some intuitive templates types include waiting for one robot to pass, 

moving behind the other robot, or aligning with the other robot to fit though a passage. To have 

a starting point to work from in the code, we simplified the problem to be that robots are rigid, 

jointless bodies which can freely translate and rotate at a given speed. This project used a 

pseudo-2D environment, where thin wafer-like robots navigate a similarly thin 3D space, and 

static obstacles stretch from the floor to the ceiling of this space1. The long-term goal is to find a 

generic method that can be applied to MAMP problems which can improve the speed at which 

sub-optimal paths are found; and this simplified problem will help build an understanding of 

how it would work and develop the code infrastructure needed before generalizing. 

 

 
1 The choice of pseudo-2D instead of 2D is because the code this project was built on is focused on 3D 

problems, and it would have me taken time to adapt it to be true 2D. The choice of 2D instead of 3D was 

to make the problem easier to visualize and understand. 



Project Work Performed 

The method developed has multiple stages, which will be discussed in more detail in the 

following sections. First, before the search begins, templates must be generated. Then CBS-MP 

begins to run, finds a conflict, and generates a “window”. Now it must determine which 

templates to try via “pre-pasting”. Pre-pasting returns a heuristic of how effective the paste will 

be, and from that we can then attempt to paste a template, trying templates ordered by 

heuristic until we find one that works or exhaust all valid templates. If we succeed in pasting a 

template, CBS-MP resumes as if there was no conflict; otherwise, it defaults normal CBS-MP 

behavior and creates a CT node. 

 

Template Generation      For this project, we created templates by setting up miniature 

environments of pairs of robots and running a MAMP solver on it. These environments were: 

head-on collision (robots had to swap places), orthogonal ‘T-bone’ collision (one robot going up, 

one robot going left) and the mirrored version, parallel motion (two robots very close together 

moving same direction). The MAMP solver we ran in these environments was a simple 

hierarchical planner, where the first robot’s path was generated, followed by the second robot 

who had to avoid the first. In the future, being able to import existing templates for robots can 

be used to reduce the run time if available.  

 

Pasting W indow      Before we get into the details of pasting, we need to outline some of the 

design decisions made for this project that frame the implementation later. 

 

Figure 2: Cartoon depiction of how the pasting window works. 



In order to use the template to resolve a conflict, the template must be merged into the robots’ 

global paths. There are several ways that this could be done, such as taking the point of 

(hypothetical) collision for both the robots and template and using that as an anchor point to 

place the template translationally, then rotating the template into place and connecting it into 

the rest of the roadmap somehow. However, this makes it difficult to ensure that the distances 

to get to the template are the same, which goes against the decision discussed in the previous 

paragraph. Instead, we create a “window” of time around the conflict, and try to find a solution 

inside of that window that connects to the configurations in the path on the border of that 

window. We do this by following the edge where the conflict occurs w timesteps before, and 

placing a node there; then do the same stepping w timesteps after conflict. We place these pairs 

of nodes for both conflicting robots, ending up with 4 configurations, 2 in each configuration 

space corresponding to start and end of the window. Now when we want to paste our template, 

we simply have to consider these 4 configurations and try to match them to the 4 corresponding 

configurations in the template. When we paste our template, we can then connect these 

configurations between window and template to get a conflict-free path for the pair of robots 

guaranteed up until the end of the window after the template. 

 

Pre-Pasting      At this point, a conflict has been identified, and we have a list of templates 

which could be applied. Now we need to figure out how to transform the template into the right 

place to resolve the conflict, and then evaluate how good of a paste it will be. This needs to be 

done quickly, since it will be run for every template each time there is a conflict. We split pre-

paste off from paste because paste contains the slower operations of actually checking collisions 

so should be called less often, and is sufficiently different in what it does to be considered 

something different. 

As discussed before, we require that both robots arrive at the start of the template at the same 

time. Let S1, S2 denote the configurations of robots 1 and 2 at the start of the window, and let 

S1’ S2’ denote the configurations of robots 1 and 2 at the start of the pasted template. Assuming 

that the time it takes to get from one configuration to another is dependent solely on the 

Euclidean distance2, and knowing that by the definition of the window that both robots will be 

at Si at the same time, then we can determine a paste satisfying this constraint using simply 

geometry. As Figure 3 shows, if we translate the template so that the midpoint of the two 

starting configurations is coincident with the midpoint M of the starting configurations of the 

window, this condition is satisfied as S1 to S1’ is equally long as S2 to S2’. Then we simply must 

get a good enough angle to rotate this template, and we have a valid paste. Algorithm 1 shows 

this implemented. 

 

 
2 This assumption is certainly not generalizable, but works for these particular robots. 



  

Figure 3: Geometric proof that this transformation ensures equal distance for both robots from start of 

window to start of pasted template. 

 

Algorithm 1: PrePaste 

1. Get the midpoints of startpoints of the template as MT 

2. Get the midpoints of startpoints of window as MW 

3. Get the linear transformation TL that maps MT to MW 

4. Get the POBs of window and template as POBW and POBT respectively 

5. While we haven’t found a valid pair of POBs 

a. If either POB is invalid, continue 

b. Get POBΔ = POBT – POBW and break loop 

6. If we couldn’t find a valid pair of POBs, return failure 

7. Take POBΔ as a rotational transformation TR around origin 

8. Return the composed transformation T = TL ∘ TR 

In Algorithm 1, we define a Position Orientation Basis (POB)3 to be some angle indicative of 

the direction the window and template are facing. We try a few different ways of getting this:  

• The angle from the midpoint of startpoints to the midpoint of endpoints 

• The angle from startpoint 1 to startpoint 2 

• The angles from startpoint i to endpoint i for robots i ∈{1, 2} 

The first two methods are better heuristics as they account for both robots’ average motion, but 

may fail if the difference between the two points the angle is being calculated from is zero4. If we 

then rotate the template so that its POB matches the window’s POB, we have a decent 

heuristic for the angle to reduce the distances from the end of the template configurations to the 

end of the window configurations. 

Algorithm 1 is easily extendable to higher dimensional space by simply using more POBs. 

 
3 There is probably a clearer name for this, but I cannot come up with one. 
4 If this is also close enough to zero, we consider it a failure as well, since estimating the average motion 

based on a tiny interval is likely going to be poor. 



To evaluate how well pasting using this transform may go, we look at the 4 configurations of the 

window and the respective 4 configurations of the template (with the transform applied) and use 

some metric. We decided to use the inverse sum of the Euclidean distances from each window to 

template configuration as the metric. 

 

Pasting      Now that we have a transformation, it is relatively straight-forward. We iterate 

through each small discrete timestep, and check each interpolated configuration at that time 

against both static obstacles, and optionally against the paths of the other robots not in the 

pair. If there is a collision with a static obstacle or outsider robot, we consider the paste a failure 

and return to the loop of trying out other templates. Upon failure, all of the vertices added to 

the roadmap so far, and any other changes, should be reverted. 

We have not yet studied what benefits and detriments of checking against the other robots, but 

by the fact that not checking may result in additional conflicts that CBS-MP must resolve, it 

seems that this could slow it down in some cases, or perhaps even cause some looping behavior 

with dramatic effects. 

 

Project Results 

As of the time of writing this report, template repair fails to resolve a conflict >90% of the time 

with the parameters tested. Time to compute a solution is very similar to the case without 

repair, most likely as a result of this. I have not yet begun to investigate why this is the case, 

but suspect it to be a bug in the code that checks if the paste collides with other robot’s current 

paths. Alternatively, it may be that the templates used require too much space to maneuver and 

actually do fail to fit where they are pasted, but this seems less likely at this time. 

The main contribution is the coding infrastructure created. I expect that once the remaining 

issues are ironed out, a performance boost will be observed. The code generated solving this toy 

problem will allow future work to be done with more abstract or complex templates, which 

could potentially speed up problems that cannot yet be solved efficiently enough.  

In working through implementation, problems and improvements have been raised such as 

tardy-robustness and the separation of pre-pasting from pasting. Having this knowledge moving 

forward will allow more clarity when thinking of template repair, which is crucial if it is to be 

generalized in future work. 

 

Future Work 



The next step is to complete the work described in this paper so that experiments can be 

performed to verify that this theory does hold water. Extending the problem to higher 

dimensions is trivial, so that will likely be implemented and tested as well. 

Beyond completing this particular project, there are many ways that this can be expanded upon 

assuming that is verified to work. Generalizing to robots with joints, robots that slowly turn, 

and/or non-holonomic robots can have important practical uses, but is quite complex to figure 

out how. The reason we limited this problem to rigid, jointless, fast-turning robots is because 

there is a clear intuition as to how templates of these robots look and work. Because the 

translational component of the C-Space is a direct map to the environment coordinates, we can 

translate a template by simply adding the displacement to each configuration. Similarly, we can 

rotate the template by rotating the positions of each configuration around the template’s center 

point, and then adding the rotation to the orientation of the configuration. When this intuition 

is removed, it is more difficult to understand what the operators and constraints needed to 

position valid templates are. An analysis of the symmetries of both the robots and the motions 

involved may shed some light on this. 

It may also be beneficial to apply template repair beyond just CBS-MP. Clearly, other 

centralized multi-agent planners should be able to adopt similar techniques to the one described 

in this paper, but even beyond that it may be fruitful to consider using templates as shared 

knowledge between decentralized motion planning. 
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